Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection.
نویسندگان
چکیده
We report on mechanical dissipation measurements carried out on thin (∼100 nm), single-crystal silicon cantilevers with varying chemical surface termination. We find that the 1-2 nm-thick native oxide layer of silicon contributes about 85% to the friction of the mechanical resonance. We show that the mechanical friction is proportional to the thickness of the oxide layer and that it crucially depends on oxide formation conditions. We further demonstrate that chemical surface protection by nitridation, liquid-phase hydrosilylation, or gas-phase hydrosilylation can inhibit rapid oxide formation in air and results in a permanent improvement of the mechanical quality factor between three- and five-fold. This improvement extends to cryogenic temperatures. Presented recipes can be directly integrated with standard cleanroom processes and may be especially beneficial for ultrasensitive nanomechanical force- and mass sensors, including silicon cantilevers, membranes, or nanowires.
منابع مشابه
Nanofluidics of Single-Crystal Diamond Nanomechanical Resonators.
Single-crystal diamond nanomechanical resonators are being developed for countless applications. A number of these applications require that the resonator be operated in a fluid, that is, a gas or a liquid. Here, we investigate the fluid dynamics of single-crystal diamond nanomechanical resonators in the form of nanocantilevers. First, we measure the pressure-dependent dissipation of diamond na...
متن کاملDesign strategies for controlling damping in micromechanical and nanomechanical resonators
Damping is a critical design parameter for miniaturized mechanical resonators used in microelectromechanical systems (MEMS), nanoelectromechanical systems (NEMS), optomechanical systems, and atomic force microscopy for a large and diverse set of applications ranging from sensing, timing, and signal processing to precision measurements for fundamental studies of materials science and quantum mec...
متن کاملHigh-Q nanomechanics via destructive interference of elastic waves.
Mechanical dissipation poses a ubiquitous challenge to the performance of nanomechanical devices. Here we analyze the support-induced dissipation of high-stress nanomechanical resonators. We develop a model for this loss mechanism and test it on Si(3)N(4) membranes with circular and square geometries. The measured Q values of different harmonics present a nonmonotonic behavior which is successf...
متن کاملParticle number scaling for diffusion-induced dissipation in graphene and carbon nanotube nanomechanical resonators
When a contaminant diffuses on the surface of a nanomechanical resonator, the motions of the two become correlated. Despite being a high-order effect in the resonator-particle coupling, such correlations affect the system dynamics by inducing dissipation of the resonator energy. Here, we consider this diffusion-induced dissipation in the cases of multiple particles adsorbed on carbon nanotube a...
متن کاملEvidence of universality in the dynamical response of nanomechanical ultra-nanocrystalline diamond resonators at millikelvin temperatures
We report millikelvin-temperature measurements of dissipation and frequency shift in megahertzrange resonators fabricated from ultra-nanocrystalline diamond. Frequency shift δf/f0 and dissipation Q−1 demonstrate temperature dependence in the millikelvin range similar to the glass model of two level systems. The logarithmic temperature dependence of δf/f0 is in good agreement with the glass mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 26 46 شماره
صفحات -
تاریخ انتشار 2015